支持向量机与基于核的机器学习导论 简介
支持向量机(Support Vector Machine,SVM)是建立在弗拉基米尔・万普尼克(Vladimir Vapnik)提出的统计学习理论基础上的一种使用广泛的机器学习方法。这本简明导论教程对支持向量机及其理论基础进行了全面的介绍。书中从机器学习方法论讲到超平面、核函数、泛化理论、优化理论,最后总结到支持向量机理论,并介绍了其实现技术及应用。本书的叙述循序渐进,内容深入浅出,既严谨又易于理解。书中清晰的条理、富于逻辑性的推导以及优美的文字,备受初学者和专家的赞许。本书可作为计算机、自动化、电子工程、应用数学等专业的高年级本科生或研究生教材,也可作为机器学习、人工智能、神经网络、数据挖掘等课程的参考教材,同时还是相关领域的教师和研究人员的参考书。
关于我们 - 网站帮助 - 版权声明 - 友情连接 - 网站地图
本站所收录作品、社区话题、书库评论及本站所做之广告均属其个人行为,与本站立场无关
本站所有的作品,图书,资料均为网友更新,如果侵犯了您的权利,请与本站联系,本站将立刻删除(E-MAIL:847151540@qq.com)
Copyright © 2005-2016 www.newbook8.com All Rights Reserved.备案号